Default header image

W.R. Smith Publications

Books

  1. Chemical Reaction Equilibrium Analysis: Theory and Algorithms, W.R. Smith and R.W. Missen, Wiley-Interscience, 1982 (ISBN 0-471-09347-5), 364 pp.; Spanish edition, 1989; Reprinted, with corrections, by Krieger Publishing Co., Malabar, Florida, as ISBN 0-89464-584-6, 1991.
  2. Chaos, Fractals and Dynamics, ed. P. Fischer and W.R. Smith, Marcel-Dekker, 1985, (ISBN 0-8247-7325-X), 261 pp.

Journal Articles

  1. W.R. Smith, H. Tahir and A.M.M. Leal, “Stoichiometric and non-stoichiometric methods for modeling gasification and other reaction equilibria: A review of their foundations and their interconvertibility”, Renewable and Sustainable Energy Reviews, 189, 113935 (2024) 10.1016/j.rser.2023.113935
  2. L. Tran, W. R. Smith, and J. Skvara, “Atomistic simulation framework for molten salt vapor–liquid equilibrium prediction and its application to NaCl”, J. Chem. Phys., 156, 144501-1-144501-12 (2022)
    doi.org/10.1063/5.0089455
  3. A. Leal and W.R. Smith, “Inverse Chemical Equilibrium Problems: General Formulation and Algorithm”, Chem. Eng. Sci. 248, 117162-1-117162-20 (2022). doi.org/10.1016/j.ces.2021.117162
  4. W.R. Smith, “Reminiscences of Doug Henderson and Hard Spheres”, J. Molecular Liquids, 368, Part A: 120555, 1-2 (2022) doi.org/10.1016/j.ces.2021.117162
  5. J. Noroozi and W. R. Smith, “Force-Field-Based Computational Study of the Thermodynamics of a Large Set of Aqueous Alkanolamine Solvents for Post-Combustion CO2 Capture”, J. Chem. Inf. Modeling, 61, 4497-4513 (2021). doi.org/10.1021/acs.jcim.1c00718
  6. J. Noroozi and W. R. Smith, “Force-Field-Based Computational Study of the Thermodynamics of a Large Set of Aqueous Alkanolamine Solvents for Post-Combustion CO2 Capture”, J. Chem. Inf. Modeling, 61, 4497-4513 (2021). doi.org/10.1021/acs.jcim.1c00718
  7. N. Hatefi and W. R. Smith, “Ideal-Gas Thermochemical Properties for Alkanolamine and Related Species Involved in Carbon-Capture Applications”, .J. Chem. Eng. Data, (2020). 10.1021/acs.jced.0c00742
  8. J. Noroozi and W. R. Smith, “Accurately Predicting CO2 Reactive Absorption Properties in Aqueous Alkanolamine Solutions by Molecular Simulation Requiring No Solvent Experimental Data”, .J. Chem. & Eng. Res., 59, 18254-18268 (2020). 10.1021/acs.iecr.0c03738
  9. W. R. Smith, “A Precise, Simple and General Le Chatelier Principle Based on Elementary Calculus: What Le Chatelier Had in Mind?”, J. Math. Chem.,  58,1548-1570 (2020).
    10.1007/s10910-020-01140-3
  10. B. Kelly and W.R. Smith, “A Simple Method for Including Polarization Effects in Solvation Free Energy Calculations When Using  Fixed-Charge Force Fields: Alchemically Polarized Charges”, ACS Omega, 5, 17170-17181 (2020).
    10.1021/acs.omega.0c01148
  11. B. Kelly and W.R. Smith, “`Alchemical hydration free-energy calculations using molecular dynamics with explicit polarization and induced polarity decoupling: an OTFP approach”,J. Chem. Theory Comput., 16(2), 1146-1161 (2020). 10.1021/acs.jctc.9b01139
  12. J. Noroozi and W. R. Smith, “Prediction of Alkanolamine pKa Values by Combined Molecular Dynamics Free Energy Simulations and ab initio calculations”, J. Chem. & Eng. Data, 65, 1358-1368 (2020). 10.1021/acs.jced.9b00927
  13. J. Noroozi and W. R. Smith, “An efficient molecular simulation methodology for chemical reaction equilibria in electrolyte solutions: Application to CO2 reactive absorption”, J. Phys. Chem. A, 123(18), 4074-4086 (2019). 10.1021/acs.jpca.9b00302
  14. W. R. Smith, I. Nezbeda, J. Kolafa, F. Moučka, “Recent progress in the molecular simulation of thermodynamic properties of aqueous electrolyte solutions”, Fluid Phase Equilib., 146, 19–30 (2018).
    10.1016/j.fluid.2018.03.006
  15. F. Moučka, J. Kolafa, M. Lísal, and W.R. Smith, “Chemical potentials of alkaline earth metal halide aqueous electrolytes and solubility of their hydrates by molecular simulation: Application to CaCl2, antarcticite, and sinjarite”, J. Chem. Phys., 148, 222831-1–222831-12 (2018).
    10.1063/1.5024212
  16. Nils E.R. Zimmermann, Bart Vorselaars, Jorge R. Espinosa, David Quigley, William R. Smith, Eduardo Sanz, Carlos Vega and Baron Peters, “NaCl nucleation from brine in seeded simulations: Sources of uncertainty in rate estimates”, J. Chem. Phys., 148, 222838-1- 22838-9 (2018).
    10.1063/1.5024009
  17. W.R. Smith and W. Qi, “Molecular Simulation of Chemical Reaction Equilibrium by Computationally Efficient Free Energy Minimization”, ACS Central Sci. 4(9), 1185-1193 (2018).
    10.1021/acscentsci.8b00361
  18. B. Kelly and W. R. Smith, “Molecular Simulation of Chemical Reaction Equilibria by Kinetic Monte Carlo”, Molec. Phys., 117(20), 2778-2785 (2018). 10.1080/00268976.2018.1552027
  19. William R. Smith, “Improved solvents for CO2 capture by molecular simulation methodology”,in Carbon Dioxide Capture and Acid Gas Injection., ed. Ying Wu, John J. Carroll and Weiyao Zhu, Scrivener Publishing, Beverley MA and J. Wiley & Sons, Hoboken NJ (ISBN 978-1-118-93866-9), pp. 147-160 (2017).
  20. A. Leal, D. Kulik, W.R. Smith and O. Saar, “An overview of computational methods for chemical equilibrium and kinetic calculations for geochemical and reactive transport modeling”, Pure & Applied Chemistry,89(5), 597-643 (2017). 10.1515/pac-2016-1107
  21. William R. Smith, Jan Jirsák, Ivo Nezbeda and Weikai Qi, “Molecular simulation of caloric properties of fluids modelled by force fields with intramolecular contributions: Application to heat capacities”, J. Chem. Phys., 147(3), 134508 (2017). 10.1063/1.4993572
  22. I. Nezbeda, F. Moučka and W.R. Smith, “Recent progress in molecular simulation of aqueous electrolytes:Force fields, chemical potentials and solubility (Invited Review)”, Molec. Phys., 114, 1665-1690 (2016). 10.1080/00268976.2016.1165296
  23. B.D. Kelly, W.R. Smith and D. Henderson, “Analytical representation of the density derivative of the Percus-Yevick hard-sphere radial distribution function”, Molec. Phys., 114, 2446-2450 (2016).
    10.1080/00268976.2016.1164908
  24. W.R. Smith, F. Moučka and I. Nezbeda, “Osmotic pressure of aqueous electrolyte solutions via molecular simulations of chemical potentials: Application to NaCl”, Fluid Phase Equilib., 407, 76-83 (2016). 10.1016/j.fluid.2015.05.012
  25. F. Moučka, I. Nezbeda and W.R. Smith, “Chemical potentials, activity coefficients, and solubility in aqueous NaCl Solutions: Prediction by polarizable force fields”, J Chem. Theory. Comput., 11(4), 1756-64 (2015). 10.1021/acs.jctc.5b00018
  26. I. Nezbeda, J. Jirsák, F. Moučka and W.R. Smith, “Application of molecular simulations: Insight into liquid bridging and jetting phenomena”, Cond. Matter Phys., 18(1), 13602:1-10, (2015). 10.5488/Cmp.18.13602
  27. M. Skvorova and W.R. Smith, “Molecular-level simulation of bubble and dew points of fluid mixtures and application to refrigerant cycle design”, Int. J. Refrigeration, 42, 1-7 (2014). 10.1016/j.ijrefrig.2014.02.007
  28. S. Figueroa-Gerstenmaier, M. Lísal, I. Nezbeda, W.R. Smith and V.M. Trejos, “Prediction of isoenthalps, Joule-Thomson coefficients and Joule-Thomson inversion curves of refrigerants by molecular simulation”, Fluid Phase Equilib., 375, 143-151 (2014). 10.1016/j.fluid.2014.05.011
  29. W.R. Smith, S. Figueroa-Gerstenmaier and M. Skvorova, “Molecular simulation for thermodynamic properties and process modeling of refrigerants”, J. Chem. & Eng. Data, 59(10), 3258-3271 (2014).
    10.1021/je500260d
  30. F. Moučka, I. Nezbeda and W.R. Smith, “Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations”, J. Chem. Phys., 138(15), 154102 (2013).
    10.1063/1.4801322
  31. F. Moučka, I. Nezbeda and W.R. Smith, “Computationally efficient Monte Carlo simulations for polarisable models: multi-particle move method for water and aqueous electrolytes”, Molec. Simulation, 39(14-15), 1125-1134 (2013). 10.1080/08927022.2013.804183
  32. F. Moučka, I. Nezbeda and W.R. Smith, “Molecular simulation of aqueous electrolytes: water chemical potential results and Gibbs-Duhem equation consistency tests”, J. Chem. Phys., 139(12), 124505 (2013). 10.1063/1.4821153
  33. F. Moučka, I. Nezbeda and W.R. Smith, “Molecular force field development for aqueous electrolytes: 1. Incorporating appropriate experimental data and the inadequacy of simple electrolyte force fields based on Lennard-Jones and point charge interactions with Lorentz-Berthelot Rules”, J Chem. Theory. Comput., 9(11), 5076-85 (2013). 10.1021/ct4006008
  34. M. Skvorová, W.R. Smith and I. Nezbeda, “Molecular-level simulation of dew-points of fluid mixtures and application to refrigerant cycle design”, Proc. Fourth IIR Conf. on Thermophysical Properties and Transfer Processes of Refrigerants, Delft, the Netherlands, 16-19 June 2013, Paper TP-045.
  35. F. Moučka, M. Lísal and W.R. Smith, “Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid”, J. Phys. Chem. B, 116(18), 5468-5478 (2012). 10.1021/jp301447z
  36. F. Moučka, M. Lísal, J. Skvor, J. Jirsák, I. Nezbeda and W.R. Smith, “Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl”, J. Phys. Chem. B, 115(24), 7849-61 (2011).
    10.1021/jp202054d
  37. G.F. Naterer, S. Suppiah, L. Stolberg, M. Lewis, M. Ferrandon, Z. Wang, I. Dincer, K. Gabriel, M.A. Rosen, E. Secnik, E.B. Easton, L. Trevani, I. Pioro, P. Tremaine, S. Lvov, J. Jiang, G. Rizvi, B.M. Ikeda, L. Lu, M. Kaye, W.R. Smith, J. Mostaghimi, P. Spekkens, M. Fowler and J. Avsec, “Clean hydrogen production with the Cu-Cl cycle – Progress of international consortium, II: Simulations, thermochemical data and materials”, Int. J. Hydrogen Energy, 36(24), 15486-15501 (2011).
    10.1016/j.ijhydene.2011.08.013
  38. G.F. Naterer, S. Suppiah, L. Stolberg, M. Lewis, M. Ferrandon, Z. Wang, I. Dincer, K. Gabriel, M.A. Rosen, E. Secnik, E.B. Easton, L. Trevani, I. Pioro, P. Tremaine, S. Lvov, J. Jiang, G. Rizvi, B.M. Ikeda, L. Lu, M. Kaye, W.R. Smith, J. Mostaghimi, P. Spekkens, M. Fowler and J. Avsec, “Clean hydrogen production with the Cu-Cl cycle – Progress of international consortium, I: Experimental unit operations”, Int. J. Hydrogen Energy, 36(24), 15472-15485 (2011).
    10.1016/j.ijhydene.2011.08.012
  39. G.F. Naterer, S. Suppiah, L. Stolberg, M. Lewis, Z. Wang, V. Daggupati, K. Gabriel, I. Dincer, M.A. Rosen, P. Spekkens, S.N. Lvov, M. Fowler, P. Tremaine, J. Mostaghimi, E.B. Easton, L. Trevani, G. Rizvi, B.M. Ikeda, M.H. Kaye, L. Lu, I. Pioro, W.R. Smith, E. Secnik, J. Jiang and J. Avsec, “Canada’s program on nuclear hydrogen production and the thermochemical Cu-Cl cycle”, Int. J. Hydrogen Energy, 35(20), 10905-10926 (2010).
    10.1016/j.ijhydene.2010.07.087
  40. W.R. Smith, “Addition to letter of Dekock and Brandsen about balancing redox equations”, J. Chem. Educ., 87, 477 (2010).
  41. W.R. Smith, M. Francová, M. Kowalski and I. Nezbeda, “Refrigeration cycle design for refrigerant mixtures by molecular simulation”, Coll. Czech Chemical Communications, 75(4), 383-391 (2010).
    10.1135/cccc2009544
  42. M. Lísal, J.K. Brennan and W.R. Smith, “Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics with reaction ensemble Monte Carlo. II. Supramolecular diblock copolymers”, J. Chem. Phys., 130(10), 104902 (2009).
    10.1063/1.3079139
  43. W.R. Smith, M. Francova, M. Kowalski, M. Lísal and I. Nezbeda, “Refrigeration cycle design by molecular simulation”, Proc. Third IIR Conf. on Thermophysical Properties and Transfer Processes of Refrigerants, Boulder, CO, 21-26 June 2009, Paper IIR-157 (2009).
  44. H.L. Vortler, K. Schafer and W.R. Smith, “Simulation of chemical potentials and phase equilibria in two- and three-dimensional square-well fluids: Finite size effects”, J. Phys. Chem. B, 112(15), 4656-61 (2008).
    10.1021/jp073726r
  45. S. Labík and W.R. Smith, “New approximate analytical formula for the solute-solvent contact distribution function in an infinitely dilute binary hard-sphere mixture”, Coll. Of Czech Chemical Communications, 73(3), 314-321 (2008).
    10.1135/cccc20080314
  46. M. Lísal, P. Cosoli, W.R. Smith, S.K. Jain and K.E. Gubbins, “Molecular-level simulations of chemical reaction equilibrium for NO dimerization in disordered nanoporous carbons”, Fluid Phase Equilib., 272(1-2), 18-31 (2008).
    10.1016/j.fluid.2008.07.015
  47. C.H. Turner, J.K. Brennan, M. Lísal, W.R. Smith, J.K. Johnson and K.E. Gubbins, “Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: A review”, Molec. Simulation, 34(2), 119-146 (2008).
    10.1080/08927020801986564
  48. W.R. Smith, D.J. Henderson, P.J. Leonard, J.A. Barker and E.W. Grundke, “FORTRAN codes for the correlation functions of hard sphere fluids”, Molec. Phys., 106(1), 3-7 (2008).
    10.1080/00268970701628423
  49. S. Figueroa-Gerstenmaier, M. Francova, M. Kowalski, M. Lísal, I. Nezbeda and W.R. Smith, “Molecular-level computer simulation of a vapor-compression refrigeration cycle”, Fluid Phase Equilib., 259(2), 195-200 (2007).
    10.1016/j.fluid.2007.06.020
  50. W.R. Smith, M. Lísal and J.K. Brennan, “Effects of confinement on chemical reaction equilibrium in nanoporous materials”, Proc. Int. Conf. on Computational Science and its Applications – ICCSA2006 (M. Gavrilova et al., ed.), Lecture Notes in Comput. Sci. 3984, Springer-Verlag Berlin, Heidelberg, pp. 743-752 (2006).
  51. M. Lísal, J.K. Brennan and W.R. Smith, “Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores”, J. Chem. Phys., 124(6), (2006).
    10.1063/1.2171213
  52. W.R. Smith, M. Lísal and I. Nezbeda, “Molecular-level Monte Carlo simulation at fixed entropy”, Chem. Phys. Letters, 426(4-6), 436-440 (2006).
    10.1016/j.cplett.2006.05.121
  53. M. Lísal, J.K. Brennan and W.R. Smith, “Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics with reaction ensemble Monte Carlo. I. Polydispersed polymer systems”, J. Chem. Phys., 125(16), 164905 (2006).
    10.1063/1.2359441
  54. M. Lísal, M. Bendová and W.R. Smith, “Monte Carlo adiabatic simulation of equilibrium reacting systems: The ammonia synthesis reaction”, Fluid Phase Equilib., 235(1), 50-57 (2005).
    10.1016/j.fluid.2005.06.013
  55. M. Lísal, W.R. Smith and J. Kolafa, “Molecular simulations of aqueous electrolyte solubility: 1. The expanded-ensemble osmotic molecular dynamics method for the solution phase”, J. Phys. Chem. B, 109(26), 12956-65 (2005).
    10.1021/jp0507492
  56. R. W. Missen and W. R. Smith, “A Note on Dalton’s Law: Myths, Facts, and Implementation”, J. Chem. Educ., 82, 1197-1201 (2005).
    10.1021/ed082p1197
  57. M. Lísal, J.K. Brennan, W.R. Smith and F.R. Siperstein, “Dual control cell reaction ensemble molecular dynamics: a method for simulations of reactions and adsorption in porous materials”, J. Chem. Phys., 121(10), 4901-12 (2004).
    10.1063/1.1782031
  58. W.R. Smith and M. Lísal, “Molecular Simulation of reaction and adsorption in nanochemical devices: Increase of reaction conversion by separation of a product from the reaction mixture”, Proc. Int. Conf. on Computational Science and its Applications – ICCSA2004 (Laguna, A., ed.), Lecture Notes in Comput. Sci. 3044, Springer-Verlag Berlin, Heidelberg, pp. 392-401 (2004).
  59. M. Lísal, W.R. Smith and K. Aim, “Analysis of Henry’s constant for carbon dioxide in water via Monte Carlo simulation”, Fluid Phase Equilib., 226, 161-172 (2004).
    10.1016/j.fluid.2004.06.062
  60. M. Lísal, I. Nezbeda and W.R. Smith, “Vapor-liquid equilibria in five-site (TIP5P) models of water”, J. Phys. Chem. B, 108(22), 7412-7414 (2004).
    10.1021/jp0495242
  61. I. Nezbeda and W.R. Smith, “On the calculation of the critical temperature from the second virial coefficient”, Fluid Phase Equilib., 216(1), 183-186 (2004).
    10.1016/j.fluid.2003.11.006
  62. W.R. Smith and H.L. Vortler, “Computer simulation of cavity pair distribution functions of hard spheres in a hard slit pore”, Molec. Phys., 101(6), 805-815 (2003).
    10.1080/0026897021000044061
  63. W.R. Smith and R.W. Missen, “Mass Conservation implications of a reaction mechanism”, J. Chem. Educ., 80(7), 833-838 (2003).
    10.1021/ed080p833
  64. W.R. Smith and R.W. Missen, “Sensitivity analysis in chemical engineering education. I. Introduction and application to explicit models”, Chem. Eng. Education, 37, Summer Issue (2003).
  65. “Direct Monte Carlo Simulation of Joule-Thomson expansion and its application for alternative refrigerant fluid HFC-32”, M. Lísal, K. Aim and W.R. Smith, 20th European Symposium on Applied Thermodynamics ESAT 2003, Proceedings, pp. 69-72, Lahnstein, Germany, October 8-12, 2003.
  66. W.R. Smith and R.W. Missen, “Sensitivity analysis in chemical engineering education. II. Application to implicit models”, Chem. Eng. Education, 37, 2487-2497 (2003).
  67. M. Lísal, W.R. Smith, M. Bures, V. Vacek and J. Navratil, “REMC computer simulations of the thermodynamic properties of argon and air plasmas”, Molec. Phys., 100(15), 2487-2497 (2002).
    10.1080/00268970210130227
  68. “New direct Monte Carlo simulation methods for non-reacting and reacting systems at fixed total internal energy or enthalpy”, M. Lísal and W.R. Smith, 19th European Seminar on Applied Thermodynamics ESAT2002, Proceedings, pp. 161-162, Santorini, Greece, September 6-10, 2002.
  69. D. Viduna and W.R. Smith, “Binary hard-sphere solute-solvent radial distribution function in the colloidal limit: exact calculation from an equation of state”, Molec. Phys., 100(17), 2815-2821 (2002).
    10.1080/00268970210142657
  70. D. Viduna and W.R. Smith, “Calculation of binary hard-sphere mixture radial distribution functions at contact from an equation of state”, J. Chem. Phys., 117(3), 1214-1219 (2002).
    10.1063/1.1486446
  71. W.R. Smith and M. Lísal, “Direct Monte Carlo simulation methods for nonreacting and reacting systems at fixed total internal energy or enthalpy”, Phys. Rev. E, 66(1 Pt 1), 011104 (2002).
    10.1103/physreve.66.011104
  72. M. Lísal, W.R. Smith and I. Nezbeda, “Accurate vapour-liquid equilibrium calculations for complex systems using the reaction Gibbs ensemble Monte Carlo simulation method”, Fluid Phase Equilib., 181(1-2), 127-146 (2001).
    10.1016/S0378-3812(01)00489-7
  73. W.R. Smith and R.W. Missen, “Optimality criteria for multiphase chemical equilibrium”, in Encyclopedia of Optimization, ed C. Floudas and G. Pardalos, Kluwer Academic Publishers, Dordrecht, the Netherlands, Vol IV, pp. 166-173 (2001).
  74. W.R. Smith, M. Lísal and I. Nezbeda, “Molecular-level computer simulation of the thermodynamic properties of thermal plasmas”, Proc. 15th International Symposium on Plasma Chemistry (ISPC 15), July 9-13, Orleans, France, ed A. Bouchoule, J.M. Pouvesle, A.L. Thomann, J.M. Bauchire and E. Robert, pp. 7-12 (2001).
  75. W.R. Smith, M. Lísal and R.W. Missen, “The Pitzer-Lee-Kesler-Teja (PLKT) strategy and its implementation by meta-computing software”, Chem. Eng. Education, 35, 68-73 (2001).
  76. W.R. Smith and R.W. Missen, “Letter to the editor, re “A thermodynamics problem with two conflicting solutions”, Chem. Eng. Education, 35, Summer (2001).
  77. H.L. Vortler and W.R. Smith, “Computer simulation studies of a square-well fluid in a slit pore. Spreading pressure and vapor-liquid phase equilibria using the virtual-parameter-variation method”, J. Chem. Phys., 112(11), 5168-5174 (2000).
  78. M. Lísal, W.R. Smith and I. Nezbeda, “Molecular simulation of multicomponent reaction and phase equilibria: Reaction-ensemble Monte Carlo (REMC) simulation of the MTBE ternary system”, AIChE J., 46(4), 866-875 (2000).
    10.1002/aic.690460419
  79. M. Lísal, W.R. Smith and I. Nezbeda, “Computer simulation of the thermodynamic properties of high-temperature chemically-reacting plasmas”, J. Chem. Phys., 113(12), 4885-4895 (2000).
  80. R.W. Missen and W.R. Smith, “Yield, selectivity, and all that”, Chem. Eng. Education, Fall, 34, 320-324 (2000).
  81. S. Labík, A. Malijevský, R. Kao, W.R. Smith and F. Del Rio, “The SP-MC computer simulation method for calculating the chemical potential of the square-well fluid”, Molec. Phys., 96(5), 849-854 (1999).
    10.1080/002689799165233
  82. M. Lísal, I. Nezbeda and W.R. Smith, “The reaction ensemble method for the computer simulation of chemical and phase equilibria. II. The Br2 + Cl2 + BrCl system”, J. Chem. Phys., 110(17), 8597 (1999).
    10.1063/1.478767
  83. J. Kolafa, I. Nezbeda, J. Pavlíček and W.R. Smith, “Global phase diagrams of model and real binary fluid mixtures Part II. Non-Lorentz–Berthelot mixtures of attractive hard spheres”, Phys. Chem. Chem. Phys., 1(18), 4233-4240 (1999).
    10.1039/a902837d
  84. M. Lísal, W.R. Smith and I. Nezbeda, “Accurate computer simulation of phase equilibrium for complex fluid mixtures. Application to binaries involving isobutene, methanol, methyl tert-butyl ether, and n-butane”, J. Phys. Chem. B, 103(47), 10496-10505 (1999).
    10.1021/jp991188f
  85. G. Speckhofer, R. Gilles, W.R. Smith and M. Bures, “A consistent set of thermodynamic properties and transport coefficients for high-temperature plasmas”, Proc. 14th International Symposium on Plasma Chemistry (ISPC 14), August 2-6, Prague, Czech Republic, ed. M. Hrabovsky, M. Konrad and V. Kopecky, Vol 1, pp. 269-274 (1999).
  86. W.R. Smith, I. Nezbeda, M. Strnad, B. Triska, S. Labík and A. Malijevský, “Generalized thermodynamic perturbation theory for polyatomic fluid mixtures. I. Formulation and results for chemical potentials”, J. Chem. Phys., 109(3), 1052-1061 (1998).
    10.1063/1.476647
  87. J. Kolafa, I. Nezbeda, J. Pavlicek and W.R. Smith, “Global phase diagrams of model and real binary fluid mixtures: Lorentz-Berthelot mixture of attractive hard spheres”, Fluid Phase Equilib., 146(1-2), 103-121 (1998).
    10.1016/S0378-3812(98)00226-X
  88. S. Labík, V. Jirasek, A. Malijevský and W.R. Smith, “Modifications of the SP-MC method for the computer simulation of chemical potentials: Ternary mixtures of fused hard sphere fluids”, Molec. Phys., 94(2), 385-393 (1998).
    10.1080/002689798168268
  89. R.W. Missen and W.R. Smith, “Letter to the editor regarding chemical stoichiometry”, J. Chem. Educ., March, 1998 issue.
  90. I. Nezbeda, J. Kolafa and W.R. Smith, “Molecular theory of phase equilibria in model and real associated mixtures III. Binary solutions of inert gases and n-alkanes in ammonia and methanol”, Fluid Phase Equilib., 130(1-2), 133-156 (1997).
    10.1016/s0378-3812(96)03192-5
  91. A. Malijevský, M. Barosova and W.R. Smith, “Integral equation and computer simulation study of the structure of additive hard-sphere mixtures”, Molec. Phys., 91(1), 65-73 (1997).
    10.1080/002689797171742
  92. I. Nezbeda, J. Kolafa and W.R. Smith, “Global phase diagrams of binary mixtures – Systematic basis for describing types of phase equilibrium phenomena”, J. Chem. Soc., Faraday Trans., 93(17), 3073-3080 (1997).
    10.1039/a608196g
  93. W.R. Smith and R.W. Missen, “Using Mathematica and Maple to obtain chemical equations”, J. Chem. Educ., 74(11), 1369-1371 (1997).
  94. Y. Jiang, G.R. Chapman and W.R. Smith, “On the geometry of chemical reaction and phase equilibria”, Fluid Phase Equilib., 118(1), 77-102 (1996).
    10.1016/0378-3812(95)02828-5
  95. W.R. Smith and H.L. Vortler, “Monte Carlo simulation of fluid phase equilibrium. In pore systems: Square-well fluid distributed over a bulk and a slit-pore”, Chem. Phys. Letters, 249(5-6), 470-475 (1996).
    10.1016/0009-2614(95)01433-0
  96. M. Barosova, A. Malijevský, S. Labík and W.R. Smith, “Computer simulation of the chemical potentials of binary hard-sphere mixtures”, Molec. Phys., 87(2), 423-439 (1996).
    10.1080/00268979600100281
  97. S. Labík and W.R. Smith, “Computer simulation of the chemical potential and adsorption isotherm of hard spheres in a hard slit-like pore”, Molec. Phys., 88(5), 1411-1418 (1996).
    10.1080/00268979650025920
  98. J. Šedlbauer, S. Labík, A. Malijevský and W.R. Smith, “A new geometrically-based integral equation hierarchy for hard-sphere systems. 3. Thermodynamics and structure of the hard disk fluid”, Molec. Phys., 85(1), 61-69 (1995).
    10.1080/00268979500100931
  99. I. Nezbeda, J. Kolafa, J. Pavlíček and W.R. Smith, “Molecular theory of phase equilibria in model and real associated mixtures. II. Binary aqueous mixtures of inert gases and n-alkanes”, J. Chem. Phys., 102(24), 9638 (1995).
    10.1063/1.468782
  100. Y. Jiang, W.R. Smith and G.R. Chapman, “Global optimality conditions and their geometric interpretation for the chemical and phase-equilibrium problem”, SIAM J. Optimization, 5(4), 813-834 (1995).
    10.1137/0805039
  101. S. Labík, V. Jirasek, A. Malijevský and W.R. Smith, “Computer simulation of the chemical potentials of fused hard sphere diatomic fluids”, Chem. Phys. Letters, 247(3), 227-231 (1995).
    10.1016/0009-2614(95)01214-0
  102. S. Labík and W.R. Smith, “Scaled particle theory and the efficient calculation of the chemical potential of hard spheres in the NVT ensemble”, Molec. Simulation, 12(1), 23-31 (1994).
    10.1080/08927029408022533
  103. W.R. Smith and B. Triska, “The reaction ensemble method for the computer simulation of chemical and phase equilibria. I. Theory and basic examples”, J. Chem. Phys., 100(4), 3019-3027 (1994).
    10.1063/1.466443
  104. S. Labík, R. Pospisil, A. Malijevský and W.R. Smith, “An efficient Gauss-Newton-like method for the numerical-solution of the Ornstein-Zernike integral-equation for a class of fluid models”, J. Computational Phys., 115(1), 12-21 (1994).
    10.1006/jcph.1994.1174
  105. I. Nezbeda, W.R. Smith and J. Kolafa, “Molecular theory of phase equilibria in model associated mixtures. I. Binary mixtures of water and a simple fluid”, J. Chem. Phys., 100(3), 2191-2201 (1994).
    10.1063/1.466516
  106. W.R. Smith and B. Tríska, “The reaction ensemble method for the computer simulation of chemical and phase equilibria. I. Basic theory and thermodynamic results”, J. Chem. Phys., 100(4), 3019-3027 (1994).
    10.1063/1.466443
  107. S. Labík, A. Malijevský and W.R. Smith, “A new geometrically based integral-equation hierarchy for hard-sphere systems. 1. Basic theory and thermodynamic results”, Molec. Phys., 83(5), 983-996 (1994).
    10.1080/00268979400101711
  108. W.R. Smith, S. Labík, A. Malijevský and J. Sedlbauer, “A new geometrically based integral-equation hierarchy for hard-sphere systems. 2. Pair and triplet background correlation-functions”, Molec. Phys., 83(6), 1223-1231 (1994).
    10.1080/00268979400101891
  109. W.R. Smith, “EQS, a general-purpose PC-based chemical equilibrium program”, in Thermophysical Properties for Industrial Process Design, ed G. Thomson and S. Watanasiri, AIChE Symposium Series, 90, 88-93 (1994).
  110. J.V. Smith, R.W. Missen and W.R. Smith, “General Optimality Criteria for multiphase multireaction chemical-equilibrium”, AIChE Journal, 39(4), 707-710 (1993).
    10.1002/aic.690390421
  111. R. Pospíšil, A. Malijevský and W.R. Smith, “An accurate integral equation for molecular fluids. V. Hard prolate ellipsoids of revolution”, Molec. Phys., 79(5), 1011-1023 (1993).
    10.1080/00268979300101791
  112. R. Pospisil, A. Malijevský, P. Jech and W.R. Smith, “Integral-equation and computer-simulation studies of hard-spheres in a slit pore”, Molec. Phys., 78(6), 1461-1474 (1993).
  113. W.R. Smith and S. Labík, “Two new exact criteria for hard-sphere mixtures”, Molec. Phys., 80(6), 1561-1564 (1993).
    10.1080/00268979300103231
  114. G.W. Norval, M.J. Phillips, R.W. Missen and W.R. Smith, “Identification and application of partial chemical-equilibria in reactor modeling”, AIChE Journal, 38(8), 1288-1293 (1992).
    10.1002/aic.690380814
  115. R.W. Missen and W.R. Smith, “The permanganate-peroxide reaction: Illustration of a stoichiometric restriction”, J. Chem. Educ., 67,876-877 (1992).
  116. I. Nezbeda and W.R. Smith, “Theory of the glass transition and the amorphous state. I. The hard-sphere fluid”, Molec. Phys., 75(4), 789-803 (1992).
    10.1080/00268979200100601
  117. S. Labík, A. Malijevský and W.R. Smith, “Structure of hard-particle fluids near a hard wall. IV. yw(z,θ) for homonuclear hard diatomics”, J. Chem. Phys., 94(3), 2232 (1991).
    10.1063/1.459893
  118. A. Malijevský, S. Labík and W.R. Smith, “Prediction of the amorphous structure of the hard-sphere system up to random close packing”, Molec. Phys., 72(1), 193-198 (1991).
    10.1080/00268979100100131
  119. A. Malijevský, R. Pospíšil, W.R. Smith and S. Labík, “The Ornstein-Zernicke equation for hard spheres near a hard wall. A rapid method of numerical solution and an accurate new RHNC theory”, Molec. Phys., 72(1), 199-213 (1991).
    10.1080/00268979100100141
  120. S. Labík, A. Malijevský and W.R. Smith, “An accurate integral equation for molecular fluids. II. Hard heteronuclear diatomics”, Molec. Phys., 73(3), 495-502 (1991).
    10.1080/00268979100101341
  121. W.R. Smith, G.C. Wake, J.E. mcintosh, R.P. mcintosh, M. Pettigrew and R. Kao, “Mathematical analysis of perifusion data: models predicting elution concentration”, Am. J. Physiol., 261(1 Pt 2), R247-56 (1991).
  122. G.W. Norval, M.J. Phillips, R.W. Missen and W.R. Smith, “Constrained chemical equilibrium and incompletely specified elemental abundance data”, Can. J. Chem. Eng., 69(5), 1184-1192 (1991).
    10.1002/cjce.5450690519
  123. S. Labík, A. Malijevský and W.R. Smith, “An accurate integral equation for molecular fluids. I. Hard homonuclear diatomics”, Molec. Phys., 73(1), 87-98 (1991).
    10.1080/00268979100101081
  124. R. Pospíil, A. Malijevský, S. Labík and W.R. Smith, “An accurate integral equation for molecular fluids. III. Hard linear homonuclear triatomics”, Molec. Phys., 74(2), 253-260 (1991).
    10.1080/00268979100102201
  125. S. Labík, A. Malijevský, R. Pospíil and W.R. Smith, “An accurate integral equation for molecular fluids. IV. Hard prolate spherocylinders”, Molec. Phys., 74(2), 261-272 (1991).
    10.1080/00268979100102211
  126. W.R. Smith, “Chemical and phase equilibrium calculations in complex mixtures”, in Chemical Reactions in Complex Mixtures, ed A. V. Sapre and F. J. Krambeck, Van Nostrand Reinhold, New York, pp. 298-306 (1991).
  127. R.W. Missen and W.R. Smith, “The permanganate peroxide reaction: Illustration of a stoichiometric restriction”, J. Chem. Educ., 67(10), 876-877 (1990).
  128. W.R. Smith and G.C. Wake, “Mathematical Analysis: an Inverse problem arising in convective – diffusive flow”, IMA Journal of Applied Mathematics, 45(3), 225-231 (1990).
    10.1093/imamat/45.3.225
  129. I. Nezbeda, M.R. Reddy and W.R. Smith, “Monte Carlo study of hard-body fluids at a hard wall: pure fluids and mixtures of spheres, heteronuclear dumbbells and linear triatomics”, Molec. Phys., 71(5), 915-929 (1990).
    10.1080/00268979000102231
  130. C.A. Royer, W.R. Smith and J.M. Beechem, “Analysis of binding in macromolecular complexes: a generalized numerical approach”, Analytical Biochem., 191(2), 287-94 (1990).
    10.1016/0003-2697(90)90221-T
  131. S. Labík, W.R. Smith, R. Pospísil and A. Malijevský, “Non-spherical bridge function theory of molecular fluids. I. The hard-dumbell fluid”, Molec. Phys., 69(4), 649-660 (1990).
    10.1080/00268979000100481
  132. G.W. Norval, M.J. Phillips, R.W. Missen and W.R. Smith, “On chemical equilibrium of pseudo-one-element systems: Application to oligomerization”, Can. J. Chem. Eng., 67(4), 652-657 (1989).
    10.1002/cjce.5450670419
  133. G.W. Norval, M.J. Phillips, R.W. Missen and W.R. Smith, “Calculated equilibria for the alkene and alcohol aromatization processes”, Applied Catalysis, 54(1), 37-52 (1989).
    10.1016/S0166-9834(00)82352-0
  134. G.W. Norval, M.J. Phillips, R.W. Missen and W.R. Smith, “Applications of equilibrium sensitivity analysis to aromatization processes”, Ind. & Eng. Chem. Res., 28(12), 1884-1887 (1989).
    10.1021/ie00096a022
  135. R.W. Missen and W.R. Smith, “A question of chemical literacy?”, J. Chem. Educ., 66, 217-218 (1989).
  136. W.R. Smith and R.W. Missen, “Chemical equilibrium and polynomial equations: Beware of roots”, J. Chem. Educ., 66(6), 489-490 (1989).
  137. W.R. Smith, O.H. Scalise and T.W. Melnyk, “Phase equilibria in model binary mixtures I. Dipolar hard spheres of equal size”, Fluid Phase Equilib., 44(3), 237-254 (1989).
    10.1016/0378-3812(89)80055-x
  138. S. Labík and W.R. Smith, “Cavity distribution-functions of pure and mixed hard-sphere systems”, J. Chem. Phys., 88(2), 1223-1227 (1988).
  139. S. Labík, W.R. Smith and R.J. Speedy, “Structure of hard particle fluids near a hard wall. II. yw(z) for hard spheres”, J. Chem. Phys., 88(3), 1944 (1988).
    10.1063/1.454118
  140. S. Labík and W.R. Smith, “Structure of hard-particle fluids near a hard wall. III. yw(z) for hard-sphere mixtures”, J. Chem. Phys., 88(6), 3893 (1988).
    10.1063/1.453838
  141. W.R. Smith and R.W. Missen, “Strategies for solving the chemical equilibrium problem and an efficient microcomputer-based algorithm”, Can. J. Chem. Eng., 66(4), 591-598 (1988).
  142. E.L. Cheluget, R.W. Missen and W.R. Smith, “Computer calculation of ionic equilibria using species-related or reaction-related thermodynamic data”, J. Phys. Chem., 91(9), 2428-2432 (1987).
    10.1021/j100293a044
  143. W.R. Smith and R.J. Speedy, “Structure of hard particle fluids near a hard wall. I. yw(z) for hard disks”, J. Chem. Phys., 86(10), 5783 (1987).
    10.1063/1.452507
  144. S. Labík, W.R. Smith and I. Nezbeda, “The RAM perturbation theory for molecular fluids. I. Site-centred correlation functions”, Molec. Phys., 62(3), 775-784 (1987).
    10.1080/00268978700102551
  145. B. Kumar, S. Goldman and W.R. Smith, “Toward optimizing the sphericalized reference state in molecular perturbation theory: The Lennard-Jones diatomic fluid”, J. Chem. Phys., 84(11), 6383-6390 (1986).
    10.1063/1.450731
  146. I. Nezbeda, M. Rami Reddy and W.R. Smith, “Computer simulation studies of molecular fluid mixtures. I. Hard spheres, heteronuclear dumbells, and linear triatomics”, Molec. Phys., 55(2), 447-462 (1985).
    10.1080/00268978500101471
  147. R.H. Abraham, H. Kocak and W.R. Smith, “Chaos and intermittency in an endocrine system model”, in Chaos, Fractals and Dynamics, ed. P. Fischer and W.R. Smith, Marcel Dekker, pp. 33-70 (1985).
  148. R.W. Missen and W.R. Smith, Letter to the editor CHEMI3 NEWS, (discussion of chemical stoichiometry), Sept., 1984.
  149. S. Labík, I. Nezbeda and W.R. Smith, “The site-site pair correlation functions of molecular fluids. II. RAM theory results for hard heteronuclear diatomics”, Molec. Phys., 52(4), 815-825 (1984).
    10.1080/00268978400101581
  150. G.R. Chapman, B. Smit and W.R. Smith, “Flexibility and criticality in resource use assessment”, Geographical Analysis, 16(1), 52-64 (1984).
  151. W.R. Smith, I. Nezbeda and S. Labík, “A simple pseudo-molecular fluid model. Exact and approximate structural properties”, J. Chem. Phys., 80(10), 5219 (1984).
    10.1063/1.446592
  152. W.R. Smith and I. Nezbeda, “A simple model for associated fluids”, J. Chem. Phys., 81(8), 3694-3699 (1984).
    10.1063/1.448120
  153. W.R. Smith, I. Nezbeda and M.R. Reddy, “The RAM perturbation theory for inhomogeneous molecular fluids: Hard dumbbells at a hard wall”, Chem. Phys. Letters, 106(6), 575-578 (1984).
    10.1016/0009-2614(84)85386-5
  154. I. Nezbeda, W.R. Smith and S. Labík, “Perturbation theory for the Lennard-Jones diatomic fluid. II. Thermodynamic and quasithermodynamic properties”, J. Chem. Phys., 81(2), 935 (1984).
    10.1063/1.447694
  155. I. Nezbeda, W.R. Smith and S. Labík, “Perturbation theory for the Lennard-Jones diatomic fluid. I. Site-centered spherical harmonic coefficients”, J. Chem. Phys., 79(12), 6242 (1983).
    10.1063/1.445729
  156. W.R. Smith and I.V.O. Nezbeda, “The reference average Mayer-function (RAM) perturbation theory for molecular fluids”, 204, 235-279 (1983).
    10.1021/ba-1983-0204.ch011
  157. B. Smit, G.R. Chapman and W.R. Smith, “Models to measure criticality in land resource use”, Proc. 14th Annual Pittsburgh modeling and Simulation Conference, pp. 949-952 (1983).
  158. W.R. Smith, “Qualitative mathematical models of endocrine systems”, Am. J. Physiol., 245(4), R473-R477 (1983).
  159. W.R. Smith, “Microcomputers in mathematical and scientific research”, Applied Math. Notes (Can. Math. Soc.), 9, 39-51 (1983).
  160. N.G. Zamani and W.R. Smith, “Dynamic programming treatment of the finite element method for two-point boundary value problems”, Int. J. Comput. Math., 12(2), 137-151 (1982).
    10.1080/00207168208803332
  161. G.R. Chapman, R.D. Gentry and W.R. Smith, “The University of Guelph Mathematics and Statistics Clinic”, Applied Math. Notes (Can. Math. Soc.), 7, 35-39 (1982).
  162. I. Nezbeda and W.R. Smith, “The site-site correlation functions of molecular fluids. I. Computation via zeroth-order perturbation theory”, Molec. Phys., 45(3), 681-694 (1982).
    10.1080/00268978200100531
  163. T.W. Melnyk, W.R. Smith and I. Nezbeda, “Perturbation theories for molecular fluids. III. RAM theory results for Lennard-Jones diatomic and quadrupolar fluids”, Molec. Phys., 46(3), 629-640 (1982).
    10.1080/00268978200101451
  164. W.R. Smith and G.N. White, 3rd, “A mathematical model for senescence in metazoans”, Mech. Ageing Dev., 18(3), 261-283 (1982).
    10.1016/0047-6374(82)90115-4
  165. W.R. Smith and I. Nezbeda, “Perturbation theories for molecular fluids. II. Accurate structural and thermodynamic properties of the hard spherocylinder fluid”, Molec. Phys., 44(2), 347-361 (1981).
    10.1080/00268978100102491
  166. P. Cummings, I. Nezbeda, W.R. Smith and G. Morriss, “Monte Carlo simulation results for the full pair correlation function of the hard dumbell fluid”, Molec. Phys., 43(6), 1471-1475 (1981).
    10.1080/00268978100102241
  167. W. Silvert and W.R. Smith, “The response of ecosystems to external perturbations”, Math. Biosciences, 55(3-4), 279-306 (1981).
    10.1016/0025-5564(81)90101-2
  168. I. Nezbeda and W.R. Smith, “The use of a site-centered coordinate system in the statistical mechanics of site-interaction molecular fluids”, Chem. Phys. Letters, 81(1), 79-82 (1981).
    10.1016/0009-2614(81)85331-6
  169. I. Nezbeda and W.R. Smith, “Equation of state of site-interaction fluids from the site-site correlation function”, J. Chem. Phys., 75(8), 4060-4063 (1981).
    10.1063/1.442564
  170. W.R. Smith, “A new program in honors applicable mathematics”, Applied Math. Notes (Can. Math. Soc.), 6, 40-47 (1981).
  171. W.R. Smith, “Hypothalamic regulation of pituitary secretion of luteinizing hormone. II. Feedback control of gonadotropin secretion”, Bull. Math. Biology, 42(1), 57-78 (1980).
    10.1007/BF02462366
  172. D. Henderson, O.H. Scalise and W.R. Smith, “Monte Carlo calculations of the equation of state of the square-well fluid as a function of well width”, J. Chem. Phys., 72(4), 2431-2438 (1980).
    10.1063/1.439437
  173. T.W. Melnyk and W.R. Smith, “Perturbation theories for molecular fluids. I. The RAM and BLIP-function theories for hard dumbells”, Molec. Phys., 40(2), 317-331 (1980).
    10.1080/00268978000101511
  174. W.R. Smith, “The Computation of Chemical Equilibria in Complex Systems”, Ind. Eng. Chem. Fundam., 19(1), 1-10 (1980).
    10.1021/i160073a001
  175. W.R. Smith, “Computational aspects of chemical equilibrium in complex systems”, in Theoretical Chemistry, An Advanced Treatise, Vol 5, ed D. Henderson and H. Eyring, Academic Press, New York, pp. 185-259 (1980).
  176. I. Nezbeda, W.R. Smith and T. Boublik, “Conjectures on fluids of hard spherocylinders, dumbells, and spheres”, Molec. Phys., 37(3), 985-989 (1979).
    10.1080/00268977900103341
  177. I. Nezbeda and W.R. Smith, “The RAM perturbation theory and the hard dumbell fluid”, Chem. Phys. Letters, 64(1), 146-149 (1979).
    10.1016/0009-2614(79)87296-6
  178. D. Henderson, L. Blum and W.R. Smith, “Application of the hypernetted chain approximation to the electric double-layer at a charged planar interface”, Chem. Phys. Letters, 63(2), 381-383 (1979).
    10.1016/0009-2614(79)87041-4
  179. W.R. Smith and R.W. Missen, “What is chemical stoichiometry?”, Chem. Eng. Education, Winter, 26-32 (1979).
  180. P.H. Björnbom and W.R. Smith, “Some remarks on the calculation of complex chemical equilibria by general methods”, Ind. & Eng. Chem. Fundamentals, 17(1), 69-70 (1978).
    10.1021/i160065a014
  181. W.G. Madden, D.D. Fitts and W.R. Smith, “Perturbation theory for the radial distribution functions of dipolar and quadrupolar hard-sphere fluids”, Molec. Phys., 35(4), 1017-1027 (1978).
    10.1080/00268977800100751
  182. D. Henderson and W.R. Smith, “Exact analytical formulas for the distribution functions of charged hard spheres in the mean spherical approximation”, J. Stat. Phys., 19(2), 191-200 (1978).
    10.1007/bf01012511
  183. W.R. Smith and D. Henderson, “Some corrected integral equations and their results for the square-well fluid”, J. Chem. Phys., 69(1), 319 (1978).
    10.1063/1.436355
  184. W.R. Smith, I. Nezbeda, T.W. Melnyk and D.D. Fitts, “Reference system selection and average Mayer-function perturbation theory for molecular fluids”, Disc. Faraday Society, 66, 130 (1978).
    10.1039/dc9786600130
  185. W. Silvert and W.R. Smith, “Optimal exploitation of a multi-species community”, Math. Biosciences, 33(1-2), 121-134 (1977).
    10.1016/0025-5564(77)90067-0
  186. Y. Tago and W.R. Smith, “Decay of pair correlation functions”, Can. J. Phys., 55(9), 761-766 (1977).
    10.1139/p77-105
  187. T.W. Melnyk, O. Knop and W.R. Smith, “Extremal arrangements of points and unit charges on a sphere: Equilibrium configurations revisited”, Can. J. Chem., 55(10), 1745-1761 (1977).
    10.1139/v77-246
  188. W.R. Smith, “Chemical stoichiometry and elementary linear algebra”, Applied Math. Notes, 3, 33-34 (1977).
  189. W.R. Smith, D. Henderson and Y. Tago, “Mean spherical approximation and optimized cluster theory for the square‐well fluid”, J. Chem. Phys., 67(11), 5308-5316 (1977).
    10.1063/1.434709
  190. T.W. Melnyk, I.W. Richardson, A.A. Simpson and W.R. Smith, “Hypothalamic regulation of pituitary secretion of luteinizing hormone”, Bull. Math. Biology,, 38(4), 387-400 (1976).
    10.1007/bf02462213
  191. W.R. Smith, “Some remarks on the calculation of complex chemical equilibria by general methods”, Ind. & Eng. Chem. Fundamentals, 15(3), 227-229 (1976).
    10.1021/i160059a016
  192. W.R. Smith, “A perturbation expansion for the pair distribution function of fluids with non-central forces”, Chem. Phys. Letters, 40(2), 313-315 (1976).
    10.1016/0009-2614(76)85086-5
  193. D. Henderson, J.A. Barker and W.R. Smith, “Calculation of the contact value of the first- and second-order terms in the perturbation expansion of the radial distribution function for the square-well potential”, J. Chem. Phys., 64(10), 4244-4245 (1976).
    10.1063/1.432007
  194. W.R. Smith, D. Henderson and J.A. Barker, “Perturbation theory and the triangular well potential”, Can. J. Phys., 53(1), 5-12 (1975).
    10.1139/p75-002
  195. W.R. Smith and I.W. Richardson, “Biomathematics M.Sc. Program at Dalhousie”, Applied Math. Notes (Can. Math. Soc.), 1, 24-30 (1975).
  196. W.R. Smith, W.G. Madden and D.D. Fitts, “Perturbation theory and the radial distribution function of fluids with nonspherical potentials”, Chem. Phys. Letters, 36(2), 195-198 (1975).
    10.1016/0009-2614(75)87013-8
  197. W.R. Smith and R.W. Missen, “The effect of isomerization on chemical equilibrium”, Can. J. Chem. Eng., 52(2), 280-282 (1974).
    10.1002/cjce.5450520225
  198. T.W. Melnyk and W.R. Smith, “Thermodynamics of dipolar hard sphere mixtures”, Chem. Phys. Letters, 28(2), 213-216 (1974).
    10.1016/0009-2614(74)80055-2
  199. W.R. Smith, “Some old and new expansions in the perturbation theory of fluids”, Can. J. Phys., 52(20), 2022-2029 (1974).
    10.1139/p74-268
  200. W.R. Smith, “Percus-Yevick equation of state for the square-well fluid at high densities”, J. Chem. Phys., 61(7), 2911 (1974).
    10.1063/1.1682432
  201. P. Jena and W.R. Smith, “A simple model of solid-fluid phase transitions”, Chem. Phys. Letters, 21(2), 295-296 (1973).
    10.1016/0009-2614(73)80138-1
  202. W.R. Smith, “Perturbation theory in the classical statistical mechanics of fluids”, in Statistical Mechanics, Vol. 1, ed. K. Singer, Royal Society, London, pp. 71-133 (1973).
  203. P. Jena and W.R. Smith, “Statistical mechanical perturbation theory for liquid metals”, Physics Letters A, A 41(3), 200-202 (1972).
    10.1016/0375-9601(72)90258-7
  204. W.R. Smith, “Perturbation theory and one-fluid corresponding states theories for fluid mixtures”, Can. J. Chem. Eng., 50(2), 271-274 (1972).
    10.1002/cjce.5450500223
  205. D. Henderson, J.A. Barker and W.R. Smith, “Perturbation theory in classical statistical mechanics”, Utilitas Mathematica, 1, 211-234 (1972).
  206. W.R. Smith and D. Henderson, “Perturbation calculation of the distribution functions of mixtures of hard spheres”, Molec. Phys., 24(4), 773-785 (1972).
    10.1080/00268977200101891
  207. R.J. Dulla, J.S. Rowlinson and W.R. Smith, “Effective pair potentials in fluids in the presence of three-body forces.”, Molec. Phys., 21(2), 299-315 (1971).
    10.1080/00268977100101431
  208. W.R. Smith, “Perturbation theory and the radial distribution function of the square-well fluid”, J. Chem. Phys., 55(8), 4027 (1971).
    10.1063/1.1676696
  209. W.R. Smith, “Perturbation theory and conformal solutions. I. Hard-sphere mixtures”, Molec. Phys., 22(1), 105-115 (1971).
    10.1080/00268977100102371
  210. D.D. Fitts and W.R. Smith, “Graph-theoretic analysis of the BGY theory of classical fluids with application to the fourth-virial coefficient for the 12-6 potential”, Molec. Phys., 22(4), 625-636 (1971).
    10.1080/00268977100102891
  211. K.E. Gubbins, W.R. Smith, M.K. Tham and E.W. Tiepel, “Perturbation theory for the radial distribution function”, Molec. Phys., 22(6), 1089-1105 (1971).
    10.1080/00268977100103401
  212. W.R. Smith, D. Henderson and J.A. Barker, “Approximate evaluation of the second-order term in the perturbation theory of fluids”, J. Chem. Phys., 53(2), 508 (1970).
    10.1063/1.1674017
  213. W.R. Smith and D. Henderson, “Analytical representation of the Percus-Yevick hard-sphere radial distribution function”, Molec. Phys., 19(3), 411-415 (1970).
    10.1080/00268977000101421
  214. J.A. Barker, D. Henderso and W.R. Smith, “Pair and triplet interactions in argon”, Molec. Phys., 17(6), 579-& (1969).
    10.1080/00268976900101451
  215. J.A. Barker, D. Henderson and W.R. Smith, “Statistical mechanics of two-and three-body interactions in fluids”, J. Phys. Soc. Japan (Suppl.), 26, 284-285 (1969).
  216. W.R. Smith, “The effects of changes in problem parameters on chemical equilibrium calculations”, Can. J. Chem. Eng., 47(1), 95-97 (1969).
    10.1002/cjce.5450470120
  217. W.R. Smith and R.W. Missen, “Calculating complex chemical equilibria by an improved reaction-adjustment method”, Can. J. Chem. Eng., 46(4), 269-272 (1968).
    10.1002/cjce.5450460411
  218. W.R. Smith, D. Henderson and J.A. Barker, “Perturbation theory and the local compressibility approximation in classical statistical mechanics”, Can. J. Phys., 46(15), 1725-1727 (1968).
    10.1139/p68-506
  219. J.A. Barker, D. Henderson and W.R. Smith, “Three-body forces in dense systems”, Phys. Rev. Letters, 21(3), 134-136 (1968).
    10.1103/physrevlett.21.134
  220. W.R. Smith and R.W. Missen, “On the two-derative method of optimization”, Can. J. Chem. Eng., 45(6), 346-348 (1967).
    10.1002/cjce.5450450604